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1 Observation: Existing SOTA few-shot learning systems learn only from the labelled
support set without leveraging the unlabelled validation (target) sets.

2 Question: How can we extract information from unlabelled target sets, to enhance
few-shot learning systems?

3 Problem: No supervised labels means that we can’t use discriminative training to learn.
4 Solution: Meta-learn an unsupervised loss function that can extract such information,
targeted towards performing better on a task, called Self-Critique and Adapt (SCA).

5 Demonstration: State-of-the-art, currently best-in-class few-shot learning results.

Unsupervised information in the target set can be used to disambiguate the semantics of the task classes.
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Model Test Accuracy
Mini-Imagenet CUB

1-shot 5-shot 1-shot 5-shot

MAML++ (Low-End) 52.15 +− 0.26% 68.32 +− 0.44% 62.19 +− 0.53% 76.08 +− 0.51%
MAML++ (Low-End) with (preds) 52.52 +− 1.13% 70.84 +− 0.34% 66.13 +− 0.97% 77.62 +− 0.77%
MAML++ (Low-End) with (preds, params) 52.68 +− 0.93% 69.83 +− 1.18% - -
MAML++ (Low-End) with (preds, task-embedding) 54.84 +− 1.24% 70.95 +− 0.17% 65.56 +− 0.48% 77.69 +− 0.47%
MAML++ (Low-End) with (preds, task-embedding, params) 54.24 +− 0.99% 71.85 +− 0.53% - -
MAML++ (High-End) 58.37 +− 0.27% 75.50 +− 0.19% 67.48 +− 1.44% 83.80 +− 0.35%
MAML++ (High-End) with (preds) 62.86 +− 0.70% 77.07 +− 0.19% 70.33 +− 0.78% 85.47 +− 0.40%
MAML++ (High-End) with (preds, task-embedding) 62.29 +− 0.38% 77.64 +− 0.40% 70.46 +− 1.18% 85.63 +− 0.66%

Table: Ablation Studies on the conditioning information of the critique network. The combination of the
task-embedding and the predictions appear to produce the best results.

Model Test Accuracy
Mini-ImageNet CUB

1-shot 5-shot 1-shot 5-shot

Matching networks 43.56 +− 0.84% 55.31 +− 0.73% 61.16 +− 0.89% 72.86 +− 0.70%
Meta-learner LSTM 43.44 +− 0.77% 60.60 +− 0.71% - -
MAML 48.70 +− 1.84% 63.11 +− 0.92% 55.92 +− 0.95% 72.09 +− 0.76%

SNAIL 55.71 +− 0.99% 68.88 +− 0.92% - -
Qiao et al 2018 59.60 +− 0.41% 73.74 +− 0.19% - -
Baseline - - 47.12 +− 0.74% 64.16 +− 0.71%
Baseline ++ - - 60.53 +− 0.83% 79.34 +− 0.61%
Latent Embedding Optimization 61.76 +− 0.08% 77.59 +− 0.12% - -
MAML (Local Replication) 48.25 +− 0.62% 64.39 +− 0.31% - -
MAML++ (Low-End - Original) 52.15 +− 0.26% 68.32 +− 0.44% 62.19 +− 0.53% 76.08 +− 0.51%
MAML++ (Low-End - Original) + SCA (Ours) 54.84 +− 0.99% 71.85 +− 0.53% 66.13 +− 0.97% 77.62 +− 0.77%
MAML++ (High-End) 58.37 +− 0.27% 75.50 +− 0.19% 67.48 +− 1.44% 83.80 +− 0.35%
MAML++ (High-End) + SCA (Ours) 62.86 +− 0.79% 77.64 +− 0.40% 70.46 +− 1.18% 85.63 +− 0.66%

Table: Test accuracy comparison with legacy and other SOTA methods. Our methods produce the top
performance across the board.
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